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Abstract
A q-analogue of the ĝl3 Drinfel’d–Sokolov hierarchy is proposed as a reduction
of the q-KP hierarchy. Applying a similarity reduction and a q-Laplace
transformation to the hierarchy, one can obtain the q-Painlevé VI equation
proposed by Jimbo and Sakai.
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Mathematics Subject Classification: 37K10, 39A12, 39A13

Dedicated to Professors Junkichi Satsuma and Basil Grammaticos on the
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1. Introduction

In the preceding work [1], we established a relationship between the generic Painlevé VI
equation and the ĝl3 Drinfel’d–Sokolov hierarchy that contains the three-wave resonant system.
Our approach is based on a similarity reduction of the generalized Drinfel’d–Sokolov hierarchy
that has been discussed in [2]. We remark that Conte, Grundland and Musette also discussed
a reduction from the three-wave resonant system to the generic Painlevé VI [3].

On the other hand, q-difference soliton equations have been discussed by several
researchers [4–10]. In [9], Kajiwara, Noumi and Yamada discussed a q-analogue of a similarity
reduction from the q-KP hierarchy to q-Painlevé equations. The main purpose of the present
paper is to obtain a q-analogue of the Painlevé VI equation as a similarity reduction of the
multi-component q-KP hierarchy.

In [11], Jimbo and Sakai proposed a q-difference analogue of the sixth Painlevé equation
(q-PVI), which is a coupled system of q-difference equations:
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y(t)y(qt)

a3a4
= {z(qt) − tb1}{z(qt) − tb2}

{z(qt) − b3}{z(qt) − b4} ,

z(t)z(qt)

b3b4
= {y(t) − ta1}{y(t) − ta2}

{y(t) − a3}{y(t) − a4} ,

(1)

where the parameters aj , bj (j = 1, 2, 3, 4) obey the constraint

b1b2

b3b4
= q

a1a2

a3a4
. (2)

These equations are obtained from a connection preserving deformation of a linear q-difference
equation,

Y (qζ, t) = A(ζ ; t)Y (ζ, t), A(ζ ; t)
def= A0(t) + A1(t)ζ + A2(t)ζ

2, (3)

Y (ζ, qt) = ζ(ζ I + B0(t))

(ζ − qta1)(ζ − qta2)
Y (ζ, t), (4)

where Y (ζ, t) is a (2 × 2)-matrix-valued function with respect to ζ and t. The coefficient
matrices Aj (t)(j = 0, 1, 2) are assumed to satisfy the conditions

A2(t) =
[
κ1 0

0 κ2

]
, eigenvalues of A0(t) are tθ1, tθ2,

detA(ζ, t) = κ1κ2(ζ − ta1)(ζ − ta2)(ζ − a3)(ζ − a4),

(5)

where the parameters κi, θi(i = 1, 2) are given by

κ1 = 1

qb3
, κ2 = 1

b4
, θ1 = a1a2

b1
, θ2 = a1a2

b2
. (6)

The variables y(t), z(t) of the q-PVI are related to the coefficient matrixA(ζ ; t) as follows:

(A(ζ = y(t); t))12 = 0, (7)

z(t) = (y − ta1)(y − ta2)

q(A(ζ = y; t))11
= (A(ζ = y; t))22

qκ1κ2(y − a3)(y − a4)
, (8)

where (M)ij denotes the (i, j) component of a matrix M.
In the following section, we introduce a q-analogue of the ĝlN hierarchy as a reduced

case of the multi-component q-KP hierarchy based on the work [10]. We will show that the
q-Painlevé VI can be obtained as a similarity reduction of the q–ĝl3 hierarchy.

2. A q-analogue of ĝl3 hierarchy

Throughout the paper, we assume |q| > 1 unless mentioned otherwise. We will use the
following notations:

(shift operator) em∂s f (s) = f (s + m),
(q-shift operator) (Tq(z))

mf (z) = f (qmz),

(q-difference operator) Dq(z)f (z) = 1 − Tq(z)

z
f (z) = f (z) − f (qz)

z
,

(q-shifted factorial) (z; q−1)n =
n−1∏
j=0

(1 − q−j z), (z; q−1)∞ =
∞∏

j=0

(1 − q−j z).
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To describe a q-analogue of the multi-component KP hierarchy [12], we define the Sato–
Wilson operators,

W(e∂s ; s, x) = I + W1 e−∂s + W2 e−2∂s + · · · ,
W̄ (e∂s ; s, x) = W̄0 + W̄1 e∂s + W̄2 e2∂s + · · · . (9)

The coefficients Wi = Wi(s; x)(i = 1, 2, . . .), W̄j = W̄j (s; x)(j = 0, 1, 2, . . .) are
(N × N)-matrix-valued functions that depend on a discrete variable s and a set of parameters
x = {

x
(k)
1 , x

(k)
2 , . . . (k = 1, . . . , N)

}
. We assume that W̄0 is invertible.

For a difference operator A(e∂s ) = ∑
n An en∂s , we denote by [A(e∂s )]�0 the projection

to the non-negative part: [A(e∂s )]�0 = ∑
n�0 An en∂s . We define a q-analogue of the Sato

equation as

Dq

(
x(k)

n

)
W̃ = [(

Tq

(
x(k)

n

)
W

)
Ik en∂s W−1

]
�0W̃ − (

Tq

(
x(k)

n

)
W̃

)
Ik en∂s , (10)

where W̃ = W or W̄ , and Ik = [δij δik]1�i,j�N . We remark the hierarchy defined above is
slightly different from that of [10].

Proposition 1 (Scaling symmetry). For a constant λ ∈ C
×, we define Wλ and W̄λ as

Wλ(e
∂s ; s, x)

def= λs+D(α) ◦ W(e∂s ; s, xλ) ◦ λ−s−D(α), (11)

W̄λ(e
∂s ; s, x)

def= λs+D(α) ◦ W̄ (e∂s ; s, xλ) ◦ λ−s−D(β), (12)

where D(α) = diag[α1, . . . , αN ],D(β) = diag[β1, . . . , βN ] are constant matrices and
xλ = {

λx
(k)
1 , λ2x

(k)
2 , . . . (k = 1, . . . , N)

}
. If W and W̄ solve the q-Sato equation (10),

so do Wλ and W̄λ.

Proposition 1 can be checked by a direct calculation.
We define formal Baker–Akhiezer functions,

	(∞)
q (z; s, x) = W(z; s, x)	

(∞)
q,0 (z; s, x), (13)

	
(∞)
q,0 (z; s, x) = zs+D(α)

∏
j�1

diag
[(

zjx
(1)
j q−1; q−1

)
∞, . . . ,

(
zjx

(N)
j q−1; q−1

)
∞

]
, (14)

	(0)
q (z; s, x) = W̄ (z; s, x)	

(0)
q,0(z; s, x), (15)

	
(0)
q,0(z; s, x) = zs+D(β)

∏
j�1

diag
[(

zjx
(1)
j q−1; q−1

)
∞, . . . ,

(
zjx

(N)
j q−1; q−1

)
∞

]
, (16)

where we have assumed that |q| > 1 for convergence. From (10), it follows that both
	(∞)

q (z; s, x) and 	(0)
q (z; s, x) satisfy the same q-difference equation of the form

Dq

(
x(k)

n

)
	q(z; s, x) = [(

Tq

(
x(k)

n

)
W

)
Ik en∂s W−1

]
�0	q(z; s, x). (17)

We now impose the condition,

W(e∂s ; s + 1, x) = W(e∂s ; s, x), W̄ (e∂s ; s + 1, x) = W̄ (e∂s ; s, x). (18)

If a difference operator A(e∂s ; s) satisfies the condition A(e∂s ; s + 1) = A(e∂s ; s), the
correspondence

A(e∂s ; s) =
∑
n∈Z

An(s) en∂s ↔ A(z; s) =
∑
n∈Z

An(s)z
n (19)
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preserves sums, products and commutators [12]. Here z is used as a formal indeterminate.
The q-Sato equation (10) then takes the following form:

Dq

(
x(k)

n

)
W̃ = C(k)

n W̃ − zn
(
Tq

(
x(k)

n

)
W̃

)
Ik, W̃ = W, W̄, (20)

C(k)
n (z; x) = [

zn
(
Tq

(
x(k)

n

)
W

)
IkW

−1
]
�0. (21)

If we replace x(k)
n by (1 − q)x(k)

n and take the limit q → 1, the q-Sato equation (20) is reduced
to the ĝlN hierarchy discussed in [1]. In this sense, we call as ‘q–ĝlN hierarchy’ the hierarchy
described by (20).

Hereafter we restrict ourselves to the case N = 3, and set x(k)
n = 0 for n � 2. We will

use the abbreviation xk = x
(k)
1 , Tk = Tq(xk), Ck = C

(k)
1 (k = 1, 2, 3). Then we can rewrite the

q-Sato equation (20) as

{−zxkIk + Vk(x)}W̃ = (TkW̃ )(−zxkIk + I ), (22)

where W̃ = W or W̄ , and Vk(x) is defined by

Vk(x) = I − xk{(TkW1(x))Ik − IkW1(x)}. (23)

The matrix Vk(x) is related to Ck(z; x) as

I − xkCk(z; x) = −zxkIk + Vk(x). (24)

The concrete expressions of Vk(z; x)(k = 1, 2, 3) are given as follows:

V1(z; x) = I − x1

T1(w11) − w11 −w12 −w13

T1(w21) 0 0

T1(w31) 0 0

 , (25)

V2(z; x) = I − x2

 0 T2(w12) 0

−w21 T2(w22) − w22 −w23

0 T2(w32) 0

 , (26)

V3(z; x) = I − x3

 0 0 T3(w13)

0 0 T3(w23)

−w31 −w32 T3(w33) − w33

 , (27)

where wij = wij (x) denotes the (i, j) element of W1.
The q–ĝl3 hierarchy contains a q-analogue of the three-wave resonant system. To see this,

we consider the reduced case of (17), which does not depend on s:

Dq(xk)	q(z; x) = Ck(z; x)	q(z; x). (28)

This can be rewritten as

Tk	q(z; x) = {−zxkIk + Vk(x)}	q(z; x). (29)

From the compatibility condition of (29), we have{
xkIkVl + xl(TlVk)Il = xlIlVk + xk(TkVl)Ik,

(TkVl)Vk = (TlVk)Vl,
(30)

for k, l = 1, 2, 3. Substituting (25), (26), (27) for (30), one obtains

Dq(xk)wij = (Tkwik)wkj . (31)
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If we impose the condition wji = w∗
ij (complex conjugate of wij ), equations (31) can be

regarded as a q-analogue of the three-wave resonant system.
In what follows, the matrix W̄0(x) plays a crucial role. We prepare several lemmas for

latter use.

Lemma 1. Under the reduction condition (18), W̄0(x) satisfies Tk det W̄0(x) = det W̄0(x).

Proof. The ĝl3 q-Sato equation (20) implies

{TaW(z)}(I − zxaIa){W(z)}−1 = {TaW̄ (z)}(I − zxaIa){W̄ (z)}−1. (32)

It follows that

det[TaW(z)] · {det W(z)}−1 = det[TaW̄ (z)] · {det W̄ (z)}−1. (33)

There are no positive powers with respect to z on the left-hand side, while no negative powers
on the right-hand side. Thus we obtain the result from the degree 0 term. �

Lemma 2. The matrix W̄0(x) satisfies TkW̄0(x) = Vk(x)W̄0(x)

Proof. This is a direct consequence of (22) with W̃ = W̄ . �

Lemma 3. det[Vk + λIk] = 1 + λ(k = 1, 2, 3).

Proof. The case with λ = 0 follows from lemmas 1 and 2. Using this result, we have

det [Vk + λIk] = det [Vk] + λ × {the (k, k) co-factor of Vk} = 1 + λ,

where we have used (25), (26) and (27). �

3. Similarity reduction to q-Painlevé VI

3.1. Similarity reduction to q-Schlesinger system

Motivated by the scaling symmetry (proposition 1), we impose the following conditions on
W and W̄ , which we call ‘similarity conditions’:

W(e∂s ; s, x) = qs+D(α) ◦ W(e∂s ; s, xq) ◦ q−s−D(α), (34)

W̄ (e∂s ; s, x) = qs+D(α) ◦ W̄ (e∂s ; s, xq) ◦ q−s−D(β). (35)

Under the reduction condition (18), the similarity conditions (34), (35) take the form

W(z; x) = qD(α)W(q−1z; xq)q
−D(α), (36)

W̄ (z; x) = qD(α)W̄ (q−1z; xq)q
−D(β). (37)

The similarity condition for W̄0(x) follows from (37):

W̄0(x) = qD(α)W̄0(xq)q
−D(β). (38)

We remark that the parameters αi, βi(i = 1, 2, 3) should obey the relation

α1 + α2 + α3 = β1 + β2 + β3, (39)

due to lemma 1.
The similarity conditions (36), (37) imply the following relation for 	q(z, x):

	q(qz, x) = qD(α)	q(z, xq). (40)
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Applying (29), we can calculate 	q(z, xq) as

	q(z, xq) = {−zx1I1 + (T2T3V1)}{−zx2I2 + (T3V2)}{−zx3I3 + V3}	q(z, x). (41)

Due to (22), one can rewrite this equation in two different ways:

{−zx1I1 + (T2T3V1)}{−zx2I2 + (T3V2)}{−zx3I3 + V3}

= (T1T2T3W)

3∏
k=1

(I − zxkIk)W
−1

= (T1T2T3W̄ )

3∏
k=1

(I − zxkIk)W̄
−1. (42)

Since (42) has no negative powers with respect to z, we have

(T1T2T3W)

3∏
k=1

(I − zxkIk)W
−1 =

[
(T1T2T3W)

3∏
k=1

(I − zxkIk)W
−1

]
�0

=
[
(T1T2T3W)

(
I − z

3∑
k=1

xkIk

)
W−1

]
�0

= I −
3∑

k=1

xk[z(T1T2T3W)IkW
−1]�0. (43)

It follows that (42) has the following expression:

(T1T2T3W̄ )

3∏
k=1

(I − zxkIk)W̄
−1 = U(x) − z

3∑
k=1

xkIk, (44)

where U(x) is a 3 × 3 matrix. Comparing the z0 terms in (44) and using (38), we get

U(x) = (T1T2T3W̄0)W̄
−1
0 = q−D(α)W̄0q

D(β)W̄−1
0 . (45)

Thus we have obtained a linear q-difference equation for 	q :

	q(qz; x) = {−zqD(α)X + W̄0q
D(β)W̄−1

0

}
	q(z; x), (46)

where X = diag[x1, x2, x3]. It is convenient to introduce a gauge-transformed function

	̃q
def= W̄−1

0 	q that satisfies the following system of equations:

	̃q(qz; x) = {−zW̄−1
0 qD(α)XW̄0 + qD(β)

}
	̃q(z; x), (47)

Tk	̃q(z; x) = {−zxk(TkW̄0)
−1IkW̄0 + I

}
	̃q(z; x). (48)

As we shall show in what follows, the system of the linear q-difference equations (47), (48)
works as a Lax pair for the q-PVI with (3 × 3)-matrix coefficients, which is a q-analogue of
the formulation used in [13–15].

To establish a link between the (3 × 3)-matrix system (47), (48) and the (2 × 2)-matrix
system (3), (4), we use a q-analogue of Laplace transform due to Hahn [16]. For a function
f (z), we define Lq[f ](ζ ) and L−1

q [f ](z) as

Lq[f ](ζ ) = 1

ζ

∞∑
n=0

q−nf (ζ−1q−n)

(q−1; q−1)n
, (49)
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L−1
q [f ](z) = 1

z

∞∑
n=0

(−1)nq−n(n−1)/2f (z−1qn)

(q−1; q−1)n
. (50)

Transformations (49), (50) have the following properties:

Lq[Dq−1(z)f (z)](ζ ) = ζLq[f (z)](ζ ) − (q−1; q−1)−1
∞ f (0), (51)

Lq[zf (z)](ζ ) = Dq(ζ )Lq[f (z)](ζ ), (52)

L−1
q [Dq(ζ )f (ζ )](z) = zL−1

q [f (ζ )](z), (53)

L−1
q [ζf (ζ )](z) = Dq−1(z)L−1

q [f (ζ )](z), (54)

L−1
q [Lq[f ]](z) = f (z), (55)

Lq

[
L−1

q [f ]
]
(ζ ) = f (ζ ). (56)

We outline a proof of (51)–(56) in the appendix.
If we define 
̃q(z) = L−1

q [	̃q(ζ )](z), we can show that the transformed function 
̃q(ζ )

satisfies the linear equations,

Dq−1(ζ )
̃q(ζ ; x) =
3∑

j=1

W̄−1
0 Ij W̄0(I − qD(β)+I )

ζ − qαj +1xj


̃q(ζ ; x), (57)

Dq(xk)
̃q(ζ ; x) = (TkW̄0)
−1IkW̄0(I − qD(β)+I )

ζ − qαk+1xk


̃q(ζ ; x). (58)

We can set β3 = −1 without loss of generality. With this choice, we have (I − qD(β)+I )j3 =
0(j = 1, 2, 3) and we can restrict equations (57), (58) to the two-dimensional subspace
{t (̃φ1, φ̃2, 0)}. Thus we obtain the 2 × 2 system of the form

Dq−1(ζ )Ỹ (ζ ; x) = −
3∑

j=1

Aj(x)

ζ − qαj +1xj

Ỹ (ζ ; x), (59)

Dq(xk)Ỹ (ζ ; x) = − Bk(x)

ζ − qαk+1xk

Ỹ (ζ ; x), (60)

where Ak(x), Bk(x)(k = 1, 2, 3) are defined by

Ak(x) =
[(

W̄−1
0

)
1k(

W̄−1
0

)
2k

]
[(W̄0)k1(W̄0)k2]

[
qβ1+1 − 1 0

0 qβ2+1 − 1

]
, (61)

Bk(x) =
[
((TkW̄0)

−1)1k

((TkW̄0)
−1)2k

]
[(W̄0)k1(W̄0)k2]

[
qβ1+1 − 1 0

0 qβ2+1 − 1

]
. (62)

We remark that the matrices A1, A2, A3 satisfy the relation

A1 + A2 + A3 + I =
[
qβ1+1 0

0 qβ2+1

]
. (63)

We call (59) and (60) the q-Schlesinger system since the limiting case q → 1 coincides with
the Schlesinger system associated with PVI.
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3.2. Relation with the q-Painlevé VI

Hereafter we set β3 = −1, x3 = 0. We introduce Y (ζ ; x) as

Y (ζ ; x) = (qα1x1ζ
−1; q−1)∞(qα2x2ζ

−1; q−1)∞
(ζ ; q−1)2∞(q−1ζ−1; q−1)2∞

Ỹ (ζ ; x). (64)

From (59), (60), we have

Y (q−1ζ ; x) = A(ζ ; x)Y (ζ ; x), (65)

TkY (ζ ; x) = ζ−1{(ζ − qαk+1xk)I + xkBk(x)}Y (ζ ; x), (66)

where the coefficient matrix A(ζ ; x) is given by

A(ζ ; x) = (ζ − qα1+1x1)(ζ − qα2+1x2)(I + A3(x))

+ ζ(ζ − qα2+1x2)A1(x) + ζ(ζ − qα1+1x1)A2(x). (67)

The coefficient matrix A(ζ ; x) has the form

A(ζ ; x) = A2ζ
2 + A1ζ + A0, (68)

where the matrices Ak = Ak(x) (k = 0, 1, 2) are given by

A0 = qα1+α2+2x1x2(I + A3), A2 = diag[qβ1+1, qβ2+1],

A1 = −(qα1+1x1 + qα2+1x2)A2 + qα1+1x1A1 + qα2+1x2A2.
(69)

Proposition 2. Eigenvalues of A0 are x1x2q
α1+α2+2, x1x2q

α1+α2+α3+3.

Proof. Denote as F(λ) the characteristic polynomial of A0:

F(λ) = det[λI − A0] = det[λ̃I − qα1+α2+2x1x2A3], (70)

where we have set λ̃ = λ − qα1+α2+2x1x2. Using the fact(
W̄−1

0 I3W̄0(q
D(β)+I − I )

)
ij

=
{

(A3)ij (1 � i, j � 2),

0 (j = 3),
(71)

we can rewrite λ̃F (λ̃) in terms of a 3 × 3 determinant:

λ̃F (λ̃) = det
[
λ̃I − qα1+α2+2x1x2

{
W̄−1

0 I3W̄0(q
D(β)+I − I )

}]
= det

[
λ̃I − qα1+α2+2x1x2I3

(
W̄0q

D(β)+I W̄−1
0 − I

)]
. (72)

From (23) and (38) with lemma 2, it follows that

I3W̄0q
D(β)+I W̄−1

0 = qD(α)+I I3(T1T2W̄0)W̄
−1
0

= qD(α)+I I3(T2V1)V2

= qD(α)+I {I3 − x1I3(T1T2W1)I1 − x2I3(T2W1)I2

+ x1x2I3(T1T2W1)I1(T2W1)I2}. (73)

Thus we have
(
I3W̄0q

D(β)+I W̄−1
0

)
33 = qα3+1 and obtain

λ̃F (λ̃) = λ̃2{λ̃ − qα1+α2+2x1x2(q
α3+1 − 1)}, (74)

which proves the proposition. �

Proposition 3. det[A(ζ ; x)] = qα1+α2+α3+3 ∏2
j=1(ζ − xj )(ζ − qαj +1xj ).
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Proof. Due to (61) and (67), det[A(ζ ; x)] can be written as a 3 × 3 determinant:

det[A(ζ ; x)] = (ζ − qα1+1x1)
2(ζ − qα2+1x2)

2 det
[
I + W̄−1

0 I3W̄0(q
D(β)+I − I )

+ ζ(ζ − qα1+1x1)
−1W̄−1

0 I1W̄0(q
D(β)+I − I )

+ ζ(ζ − qα2+1x2)
−1W̄−1

0 I2W̄0(q
D(β)+I − I )

]
= (ζ − qα1+1x1)

2(ζ − qα2+1x2)
2 det

[
I + I3W̄0(q

D(β)+I − I )W̄−1
0

+ ζ(ζ − qα1+1x1)
−1I1W̄0(q

D(β)+I − I )W̄−1
0

+ ζ(ζ − qα2+1x2)
−1I2W̄0(q

D(β)+I − I )W̄−1
0

]
. (75)

Applying the similarity condition (38) to (75), we have

det[A(ζ ; x)] = qα1+α2+α3+3ζ 2(ζ − qα1+1x1)(ζ − qα2+1x2)

× det[(T2V1)V2 − ζ−1x1I1 − ζ−1x2I2]. (76)

Furthermore, from (23), it follows that

(T2V1)V2 − ζ−1x1I1 − ζ−1x2I2 = (T2V1 − ζ−1x1I1)(V2 − ζ−1x2I2). (77)

According to (76), (77) and lemma 3, we obtain the result. �

Next we consider the coefficient matrix of (66) with k = 1.

Lemma 4. det[(ζ − qα1+1x1)I + x1B1(x)] = (ζ − x1)(ζ − qα1+1x1).

Proof. Due to (62), the determinant above can be written as a 3 × 3 determinant:

det[(ζ − qα1+1x1)I + x1B1(x)]

= (ζ − qα1+1x1)
−1 det[(ζ − qα1+1x1)I + x1(T1W̄0)

−1I1W̄0(q
D(β)+I − I )]

= (ζ − qα1+1x1)
−1 det

[
(ζ − qα1+1x1)I + x1V

−1
1 I1

(
W̄0q

D(β)+I W̄−1
0 − I

)]
= (ζ − qα1+1x1)

−1 det
[
(ζ − qα1+1x1)I + x1I1

{
qD(α)+I (T1V2) − V −1

1

}]
, (78)

where we have used (38) in the final line. The result follows from a direct computation
with (23). �

Now we are in position to state our main result.

Theorem 1. Assume that W(z; x) and W̄ (z; x) solve the q-Sato equation (22), and satisfy the
similarity conditions (36), (37) with β3 = −1. Take Y (∞)

q (ζ ; x1, x2) as the (2 × 2)-matrix-
valued function associated with W(z; x), and Y (0)

q (ζ ; x1, x2) with W̄ (z; x). If we replace q by
q−1 and set x1 = γ t , then the functions

Y (∗)(ζ, t) = [Y (∗)
q (ζ ; γ t, x2)]q→q−1 (∗ = ∞, 0) (79)

solve the q-difference system (3), (4). The parameters are identified as follows:

κ1 = q−β1−1, κ2 = q−β2−1, θ1 = γ x2q
−α1−α2−2, θ2 = γ x2q

−α1−α2−α3−3,

a1 = γ, a2 = γ q−α1−1, a3 = x2, a4 = x2q
−α2−1.

(80)

Proof . We have already proved that both Y (∞)
q (ζ ; x) and Y (0)

q (ζ ; x) solve (65) with (69). The
coefficient matrix A(ζ ; x) satisfies the desirous condition as shown in propositions 2 and 3.
The remaining task is to rewrite (66) as (4). Using lemma 4 to calculate the inverse of the
coefficient matrix of (66), we get

Ỹ (ζ ; x) = ζ {(ζ − x1q
α1+1)I + x1B̃1(x)}

(ζ − x1)(ζ − x1qα1+1)
T1Ỹ (ζ ; x), (81)
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where B̃1(x) is defined by

B̃1(x) =
[

(1 − qβ2+1)(W̄0)12

−(1 − qβ1+1)(W̄0)11

] [(
TjW̄

−1
0

)
21 − (

TjW̄
−1
0

)
11

]
. (82)

Applying T −1
1 to (81), we obtain

T −1
1 Ỹ (ζ ; x) = ζ

{
(ζ − x1q

α1)I + q−1x1
(
T −1

1 B̃1(x)
)}

(ζ − q−1x1)(ζ − x1qα1)
Ỹ (ζ ; x). (83)

If we replace q by q−1 and set B0 = −x1q
−α1I + qx1(T1[B̃1]q→q−1), then equation (83) agrees

with (4). �

Corollary 1. Under the assumption of theorem 1, we can obtain a solution of the q-PVI written
in terms of W̄0:

y =
[
− (A0)12

(A1)12

]
q→q−1

, (84)

z =
[ {(A0)12 + x1(A1)12}{(A0)12 + x1q

α1+1(A1)12}
q(A1)12{(A0)11(A1)12 − (A1)11(A0)12} + qβ2+2((A0)12)2

]
q→q−1

, (85)

with

(A0)12 = qα1+α2+2(qβ2+1 − 1)x1x2
(
W̄−1

0

)
13(W̄0)32, (86)

(A1)12 = (qβ2+1 − 1)
{
qα1+1x1

(
W̄−1

0

)
11(W̄0)12 + qα2+1x2

(
W̄−1

0

)
12(W̄0)22

}
, (87)

(A0)11 = qα1+α2+2x1x2
{
1 + (qβ1+1 − 1)

(
W̄−1

0

)
13(W̄0)31

}
, (88)

(A1)11 = −qβ1+1(qα1+1x1 + qα2+1x2)

+ (qβ1+1 − 1)
{
qα1+1x1

(
W̄−1

0

)
11(W̄0)11 + qα2+1x2

(
W̄−1

0

)
12(W̄0)21

}
. (89)

4. Concluding remarks

In this paper, we have obtained the q-Painlevé VI (1) as a similarity reduction of the q–ĝl3
hierarchy (20). Our method is a q-analogue of the (3 × 3)-matrix formulation of the Painlevé
VI developed in [13–15]. The technique of the Laplace transform has been used to make a
connection between a (2 × 2)-Fuchsian system and a 3 × 3 system with irregular singularities
[14, 15]. To construct the q-analogue, we have used the q-Laplace transform (49), which was
introduced in [16]. Note that similar but different versions of q-Laplace transformations have
been discussed in several literature [17, 18].

We have constructed a class of solutions for the q-PVI written in terms of W̄0 (corollary 1).
Comparing to the results on the multi-component KP hierarchy (see, for example, [12]), it
may be natural to introduce τ -functions in the following manner:

(W̄0(x))ij = τij (x)

τ (x)
(i, j = 1, 2, 3). (90)

However, this choice of the τ -functions seems to be different form that of [19, 20]. It may be
important to clarify the relationship between the results in [19, 20] and the q–ĝl3 hierarchy.
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Appendix

For reader’s convenience, we outline a proof of the formulae for the q-Laplace transformation.
Note that the parameter q is chosen as 0 < |q| < 1 in [16], while |q| > 1 in this paper. In this
appendix, we set 0 < |q| < 1 in accordance with [16], and redefine Lq and L−1

q as

Lq[f ](ζ ) = 1

ζ

∞∑
n=0

qnf (ζ−1qn)

(q; q)n
, (A.1)

L−1
q [f ](z) = 1

z

∞∑
n=0

(−1)nqn(n−1)/2f (z−1q−n)

(q; q)n
. (A.2)

If we replace q by q−1, (A.1) and (A.2) coincide with (49) and (50), respectively.

Proposition 4. Transformation (A.1) has the property

Lq[Dq(z)f (z)](ζ ) = ζLq[f (z)](ζ ) − (q; q)−1
∞ f (0). (A.3)

Proof. We introduce a truncated version of Lq as

L(M)
q [f ](ζ ) = 1

ζ

M∑
n=0

qnf (ζ−1qn)

(q; q)n
. (A.4)

Then we have

L(M)
q [Dq(z)f (z)](ζ ) =

M∑
n=0

f (ζ−1qn) − f (ζ−1qn+1)

(q; q)n

=
M∑

n=0

f (ζ−1qn)

(q; q)n
−

M∑
n=0

(1 − qn+1)
f (ζ−1qn+1)

(q; q)n+1

=
M∑

n=0

qnf (ζ−1qn)

(q; q)n
− (1 − qM+1)

f (ζ−1qM+1)

(q; q)M+1
. (A.5)

Taking the limit M → ∞, we obtain formula (A.3). �

Formula (A.3) coincides with (51) by replacing q by q−1. The remaining formulae
(52)–(54) can be obtained in similar manner.

Proposition 5. Transformations (A.1), (A.2) satisfy L−1
q [Lq[f ]](z) = f (z).
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Proof. A straightforward calculation shows that

L−1
q [Lq[f ]](z) =

∞∑
i=0

∞∑
j=0

(−1)j qi+j (j+1)/2

(q; q)i(q; q)j
f (xqi+j )

=
∞∑

k=0

qkf (xqk)

k∑
j=0

(−1)j qj (j−1)/2

(q; q)k−j (q; q)j
. (A.6)

The result follows from the formula

(z; q)k =
k∑

j=0

(q; q)k

(q; q)j (q; q)k−j

(−z)jqj (j−1)/2, (A.7)

by setting z = 1. �

Relation (56) can be proved in the same fashion.
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